当前位置:首页 > 知识点 > 高中知识点 > 高一知识点 > 高一数学知识点 > 函数知识点总结,高一数学必修一函数

函数知识点总结,高一数学必修一函数

栏目分类:高一数学知识点 发布日期:2016-11-01 浏览次数:
高一数学必修一函数(一) 1、函数定义域、值域求法综合 2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法 5、二次函数根的问题一题多

  高一数学必修一函数(一)

  1、函数定义域、值域求法综合

  2.、函数奇偶性与单调性问题的解题策略

  3、恒成立问题的求解策略

  4、反函数的几种题型及方法

  5、二次函数根的问题——一题多解

  &指数函数y=a^x

  a^a*a^b=a^a+b(a>0,a、b属于Q)

  (a^a)^b=a^ab(a>0,a、b属于Q)

  (ab)^a=a^a*b^a(a>0,a、b属于Q)

  指数函数对称规律:

  1、函数y=a^x与y=a^-x关于y轴对称

  2、函数y=a^x与y=-a^x关于x轴对称

  3、函数y=a^x与y=-a^-x关于坐标原点对称

  &对数函数y=loga^x

  如果,且,,,那么:

  ○1 • +;

  ○2 -;

  ○3 .

  注意:换底公式

  (,且;,且;).

  幂函数y=x^a(a属于R)

  1、幂函数定义:一般地,形如 的函数称为幂函数,其中为常数.

  2、幂函数性质归纳.

  (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

  (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

  (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

  方程的根与函数的零点

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

  即:方程有实数根函数的图象与轴有交点函数有零点.

  3、函数零点的求法:

  ○1 (代数法)求方程的实数根;

  ○2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

      高一数学必修一函数(二)

  (1) 定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的集合 C ,叫做函数 y=f(x),(x ∈A)的图象.

  C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) | y= f(x) , x ∈A }

  图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .

  (2) 画法

  A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点 P(x, y) ,最后用平滑的曲线将这些点连接起来 .

  B、图象变换法(请参考必修4三角函数)

  常用变换方法有三种,即平移变换、伸缩变换和对称变换

  (3) 作用:

  1 、直观的看出函数的性质; 2 、利用数形结合的方法分析解题的思路。提高解题的速度。

  • 函数知识点,高一数学函数复习总结

    高一数学函数复习总结 - 数学函数模型及其应用 1.抽象概括:研究实际问题中量,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量; 2.建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数 的解析式; 3.求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解...查看详细

  • 绝对值不等式的解法_绝对值不等式的解法大全

    绝对值不等式的解法(1) 绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解,转化的方法一般有:(1)绝对值定义法;(2)平方法;(3)零点区域法。常见的形式有以下几种。 1. 形如不等式: 利用绝对值的定义得不等式的解集为: 。在数轴上的表示如图1。 2. 形如不等式: 它的解集为:。在数轴上的表示如图2。 3. 形如不等式 它的解法是:先化为不等式组:...查看详细

相关热词:

下一篇:没有了